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Abstract 
 

How do computers affect productivity?  Many recent studies argue that using information 
technology, particularly computers, is a significant source of U.S. productivity growth.  The 
specific mechanism remains elusive.  Detailed data on the use of computers and computer 
networks have been scarce.  Plant-level data on the use of computer networks and electronic 
business processes in the manufacturing sector of the United States were collected for the first 
time in 1999.  Using these data, we find strong links between labor productivity and the presence 
of computer networks.   

 
We find that average labor productivity is higher in plants with networks.  Computer 

networks have a positive and significant effect on plant labor productivity after controlling for 
multiple factors of production and plant characteristics.  Networks increase estimated labor 
productivity by roughly 5 percent, depending on model specification.  Model specifications that 
account for endogenous computer networks also show a positive and significant relationship. 

 
Our work differs from others in several important aspects.  First, ours is the first study 

that directly links the use of computer networks to labor productivity using plant-level data for 
the entire U.S. manufacturing sector.  Second, we extend the existing model relating computers 
to productivity by including materials as an explicit factor input.  Third, we test for possible 
endogeneity problems associated with the computer network variable.   

 
 
Keywords:  Productivity, computer networks, CNUS data 
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1. Introduction 
  
 How do computers affect productivity?  Many recent studies argue that using information 
technology, particularly computers, is a significant source of U.S. productivity growth.  The 
specific mechanism remains elusive.  Detailed data on the use of computers and computer 
networks have been scarce.   
 
 This paper uses new plant-level data on computer networks collected by the U.S. Census 
Bureau to estimate the effect of computer networks on labor productivity across U.S. 
manufacturing plants.  The Computer Network Use Supplement (CNUS) to the 1999 Annual 
Survey of Manufactures (ASM) focused on the use of computer networks, rather than the 
presence of computers alone.  We link the CNUS data to current and previous information for 
the same plants collected in the 1999 ASM and the 1997 and 1992 Census of Manufactures 
(CM).  These linkages allow us to examine the relationship between productivity and the use of 
computer networks. 
 

Our work differs from others in several important aspects.  First, ours is the first study 
that directly links the use of computer networks to labor productivity using plant-level data for 
the entire U.S. manufacturing sector.  Most previous plant-level studies examining the link 
between productivity and computers or other information technology (IT) in the U.S. focus on 
the presence of computers, using either data on the stock of computer capital, or on current IT or 
computer investment as proxies for the computer stock.  Only one previous study for the U.S. 
examined the link between productivity and how computers were used.  That study (McGuckin 
et al. 1998) was limited to five manufacturing industries covered in the 1988 and 1993 Surveys 
of Manufacturing Technology (SMT) collected by the U.S. Census Bureau, and did not separate 
the use of computer networks from other uses of computers and advanced technologies.  

 
Second, we extend the existing model relating IT to productivity by including materials 

as an important factor input.  Our dependent variable is a gross-output measure of labor 
productivity.  Previous studies (e.g. Baily 1986, McGuckin and Nguyen 1993) show that gross 
output, rather than value-added, is an appropriate measure of the theoretical output, particularly 
at the plant level.  Although most previous plant-level studies for the U.S. (e.g. McGuckin et al. 
1998) use either gross output or value-added in their production analysis, they generally exclude 
materials as a factor input, possibly making their results subject to omitted variable biases.   

 
Third, we examine possible endogeneity problems associated with the computer network 

variable.  Good firms or plants are most likely to have computer networks.  We assume that the 
probability of a plant having a computer network depends on its performance and conditions in 
prior periods.   

 
Our research has three principal findings.  First, average labor productivity is higher in 

manufacturing plants with networks than in plants without networks.  Second, computer 
networks have a positive and significant effect on labor productivity after controlling for other 
important factors, such as capital intensity and other plant characteristics.  Third, the choice of 
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theoretical model has empirical consequences.  Previous papers using value-added or two-factor 
models appear to overstate the effect of IT on productivity by factors of two to three. 
 

2. Computers and Productivity:  Previous Findings 
 

Many recent aggregate studies find that computers play an important role in the strong 
economic performance of the United States economy, particularly the surge of productivity 
growth in the late 1990s (e.g., Oliner and Sichel (2000); Jorgenson and Stiroh (2000); Jorgenson 
(2001); Stiroh (2001); Nordhaus (2001); and Triplett and Bosworth (2000)).1  For example, 
Jorgenson and Stiroh (2000) find that total and average labor productivity growth between 1958 
and 1996 is relatively low in industries outside of manufacturing.  Within manufacturing, the 
annual growth rates of average labor productivity in Industrial Machinery and Equipment (SIC 
35) and Electronic and Electric Equipment (SIC 36) are far higher than for other industries (4.1. 
and 3.1 percent, compared to 2.6 percent in the next highest industry, Instruments (SIC 38)).  
Similarly, Triplett and Bosworth 2000 examine total factor and labor productivity growth over 
three periods between 1960 and 1997.  Productivity growth by any measure is far higher in 
manufacturing than in other industries during the two most recent periods (1973-1997 and 1987– 
1997), and is particularly pronounced for Electronic and Electric Equipment.  That industry’s 
multifactor productivity growth of 7.3 percent between 1987 and 1997 far exceeds the rate of 2.4 
percent for durable goods manufacturing, 2.4 percent (also) for all manufacturing industries, 0.5 
percent for services, -0.5 percent for finance, insurance, and real estate, and 0.9 percent for the 
private sector as a whole.  Jorgenson (2001) finds that IT contributes substantially to the growth 
in total factor productivity throughout the 1948 – 1999 period, and particularly for the 1990s.  
Both investments in IT and its use – consumption of IT services – contribute separately to the 
growth of gross domestic product.  Jorgenson (2001) recommends research distinguishing 
between using and producing computers.    

 
International comparisons of the pervasiveness of IT use among businesses and its effect 

on national economic performance have also been carried out.  Some cross-country comparisons 
(e.g. Colecchia and Schreyer (2001)) find a clear role for IT in the U.S. and perhaps Japan.   

 
Computers may affect productivity in at least two ways.  They may be used directly as 

inputs to the production process, as a specific form of capital.  This is the approach taken in most 
existing studies, including both the national and industry-level studies cited above, as well 
studies at the plant or business level (e.g. Brynjolfsson and Hitt (2000), Dunne et al. (2000), 
Stolarick (1999a and 1999b), McGuckin et al. (1998)).  Consider a steel mill.  Computers and 
automated processes are used to control production processes in modern steel mills.  Many 
supporting business processes also can be computerized.  For example, computers can be used to 
maintain a database of customers or shipments, or to do accounting or payroll.  Computers may 
substitute for paper-based systems without changing the underlying business processes. 

 
But computers may also be used to organize or streamline the underlying business 

processes.  When these computers are linked into networks, they facilitate standard business 
                                                 
1 Gullickson and Harper (1999) discuss a number of possible sources of measurement bias in aggregate productivity 
growth.   
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processes such as order taking, inventory control, accounting services, and tracking product 
delivery, and become electronic business processes (e-business processes; see Atrostic, Gates, 
and Jarmin (2000)).  These e-business processes occur over internal or external computer 
networks that allow information from processes to be exchanged readily.  Shipments may be 
tracked on-line, inventories may be automatically monitored and suppliers notified when pre-
determined levels are reached. 

 
Adopting e-business processes automates and connects existing business processes.  It 

can also change the way companies conduct not only these processes but also their businesses.  
The surge of interest in supply chains exemplifies this potential for computers to affect 
productivity growth outside of the manufacturing industries that produce them.  These effects are 
thought to occur through organizational change.  Many core supply chain processes are widely 
cited as examples of successful e-business processes that, in turn, are expected to shift the 
location of the process among the participants in the supply chain.  Brynjolfsson and Hitt (2000) 
argue that the effects of organizational changes may rival the effects of changes in the production 
process.  Viewed this way, computer networks are a productivity-enhancing technology.   

 
Few previous micro data studies assess the effect of computer networks on productivity.  

Most assess the effect of computers alone, using either data on book values of computer capital, 
or current investment in IT or computers, as a proxy for the computer capital stock.  Only one 
previous study for the U.S. touches on the link between productivity and how computers were 
used.  That study (McGuckin et al. 1998) uses SMT data from 1988 and 1993.  Information was 
collected only from plants in the five manufacturing industries thought to be primary users of 
such technology:  Fabricated metal products (SIC 34), Industrial machinery and equipment (SIC 
35), Electronic and other electric equipment (SIC 36), Transportation equipment (SIC 37), and 
Instruments and related products (SIC 38).  Plants were asked about their use of 17 advanced 
technologies. 

 
McGuckin et al. examine the relationship among the use of all the advanced 

technologies, and labor productivity and its growth rates in the five manufacturing industries.  
They find that diffusion differs across the surveyed technologies.  Productivity is higher at plants 
using advanced technologies, even after controlling for multiple economic characteristics of the 
plant.  The relationship between productivity and advanced technology use holds both in terms 
of the number of technologies used and in the intensity of that use.  But the use of advanced 
technologies does not necessarily cause higher productivity.  In particular, McGuckin et al. 
conclude that the positive relationship between average productivity and the use of advanced 
technologies arises because operations that are performing well are more likely to use advanced 
technologies than poorly performing operations.  However, the study does not separate the use of 
computer networks from other uses of computers and advanced technologies.  They find that 
using computer networks and other communication and control equipment increases labor 
productivity by about 12 percent in 1993. 

 
Grennan and Mairesse (1996) analyze the effect of using computers in French 

manufacturing and services firms in 1987, 1991, and 1993.  They conclude that an effect of 
about 20 percent might be conservative.  Motohasi (2001) analyzes the effect of computer 
networks using firm-level data for manufacturing, wholesale, and retail sectors in Japan in 1991.  
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For firms with networks, the estimated effects on productivity vary with the type of network and 
the e-business processes in which it is used.  Motohashi (2001) and Brynjolfsson and Hitt (2000) 
find that IT affects total factor productivity only in firms with higher human capital and flatter 
workforce organization.  However, causality is complex to model, the available micro data 
present challenges to economic measurement, and the studies are not designed to facilitate 
international comparisons, so this brief literature has not yet shed definitive light on how 
computer networks affect productivity. 

 
 

3. New Data on Computers and E-Business Processes in U.S. Manufacturing 
 

The Computer Network Use Supplement (CNUS) to the 1999 Annual Survey of 
Manufactures (ASM) surveyed some 50,000 manufacturing plants about their use of on-line 
purchasing and ordering, the presence of computer networks, the kind of network (EDI, Internet, 
both), about 25 business processes (such as procurement, payroll, inventory, etc., conducted over 
computer networks; “e-business processes”), and whether those networked processes are used to 
interact internally, or with the manufacturing plant’s customers or suppliers.  The CNUS focuses 
on the use of computer networks, rather than the presence of computers alone.  In June 2001, the 
U.S. Census Bureau released an analytical report on the use of e-business processes (E-stats, at 
www.census.gov/estats).  The report is based on the 1999 CNUS and the 1999 ASM.  Responses 
were obtained from more than 38,000 U.S. manufacturing plants, for a response rate of 82 
percent.  All CNUS data are on the NAICS basis.  Detailed information about the CNUS and 
ASM are contained in Appendix A.  The E-stats report highlights several e-businesses processes 
that appear closely related to the commercial activities of accepting and placing orders online.  
But the data show that manufacturing plants use networks for much more than on-line sales and 
orders.  Only half of manufacturing plants reporting that they have a network also report that 
they accept and/or place orders online.   

 
Atrostic and Gates (2001) use the new 1999 CNUS data to model the use of computer 

networks.  They find computer networks widely diffused within manufacturing, with networks at 
52 percent of plants.  Plants with networks are slightly more common in NAICS Nondurables 
subsectors (54 percent of plants) than in NAICS Durables subsectors (51 percent) but the percent 
of employment at plants with networks is almost identical – 76 percent in NAICS Nondurables 
and 75 percent in NAICS Durables.  Within each subsector, diffusion rates range from lows of 
27.1 percent in Apparel and 35.3 percent in Furniture to highs of 71.1 in Chemicals and 72.2 in 
Electrical Equipment.  While the estimates in Atrostic and Gates are based on plant-level 
responses, they are calculated from data aggregated to a subsector level, and their analysis does 
not address productivity.   

 
This paper is the first to use the new CNUS data to estimate plant-level economic 

activity.  Because the data are only from respondents to the CNUS, and are unweighted (see the 
discussion in www.census.gov/estats), our results may apply only to responding plants, and not 
to the manufacturing sector as a whole.  We note, however, the plants included in our sample 
account for a substantial share of U.S. manufacturing output. 
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4. New Estimates of the Effect of Computer Networks on Plant-Level Productivity 
 

To assess the effect of computer networks on productivity we first specify a theoretical 
model of how computer networks affect labor productivity, and then determine how best to 
implement it with the data available.  In this section, we present our theoretical model and 
describe how we implement it empirically.  We use the newly available CNUS data, linked with 
information these plants reported in the 1999 ASM and the 1992 and 1997 CM, to estimate 
plant-level labor productivity and the effect of computer network use on productivity.  We first 
examine whether average labor productivity differs in plants that use networks, then present and 
discuss our econometric results. 
 
 
A. Theoretical Model 
 

To examine the effect of computer networks on labor productivity we specify a Cobb-
Douglas production function 
 
 Q = AKα

1Lα
2Mα

3                                 (1) 
 
where Q, K, L, and M denote output, capital, labor, and materials, respectively. A is the usual 
“technological change” term. The parameters α1, α2 and α  3 represent output elasticities of capital, 
labor, and materials.  
 
 To incorporate computer networks (CNET) into the production function, we specify the 
technological change term, A, as a function of CNET. That is, 
 
 A =  e (β0

 + β
1

CNET)                                (2) 
 
where CNET takes on the value of 1 if the plant has a computer network, and is zero otherwise.   
 

Equation (2) is based on the idea that, at any given point in time, the plant that uses a 
computer network in its production process is likely to produce a higher level of output than its 
counterpart that does not have a computer network.  We assume networks indicate “disembodied 
technical change” that is not captured by the available empirical measures of K and L.  Computer 
networks of course could be considered part of the plant’s capital, K, because they are an 
investment like any other.  If data were available separately on the investment or service flows 
from investments in networks, separate capital factors could be created (e.g. Stolarick 1999).  
However, we have no data on the separate kinds of capital stocks or investments, only data on 
total capital and on the presence of computer networks.  We incorporate our information on 
presence of networks into the technological change term A.  This approach is also taken, for 
example, in McGuckin et al. (1998), Motohasi (2001), and Greenan and Mairesse (1996).  We 
expect that β1 is positive because computer networks should have a positive effect on the 
technological change term, “A.” 
 
 Substituting (2) into (1), dividing both side by L, performing some algebraic 
manipulation, and taking logarithms on both sides, we have the following equation: 
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 Log(Q/L) =  β0 + β1CNET + α1log(K/L) + α3log(M/L) +  

(α1 + α2 + α3  – 1) log(L)                 (3)                    
 
 Equation (3) directly relates computer network to log-labor productivity.  In this 
formulation, β1 is our parameter of interest.  β1 can be interpreted as measuring the effect of 
computer networks on labor productivity, controlling for capital intensity (K/L), materials 
intensity (M/L), and total labor, which, in turn, can be considered as a proxy for plant size.  Note 
that if α1 + α2 + α3 = 1 (or α1 + α2+ α3 – 1 = 0), we have constant returns to scale.  If α1 + α2+ α3 
is less (greater) than 1, we have decreasing (increasing) returns to scale. 
  
 
B. Empirical Specification 
 

Our theoretical model does not take into account other important plant characteristics that 
may significantly affect plant labor productivity. We therefore specify and estimate the following 
empirical model: 
 
                             
 Log(Q/L) =  β0 + β1CNET + α1log(K/L) + α3log(M/L) +α4SIZE 
                                   
                 + α5log(SKILL) + α6MULTI + ∑γiINDi + ε    (4) 

              
Labor productivity measures.   

 
The dependent variable, Log (Q/L), in equation (4), is the logarithm of the plant’s total 

value of shipments (TVS) divided by its total employment (TE).  Both the numerator and 
denominator of this ratio are reported on the 1999 ASM.  The literature terms this a “gross 
output” labor productivity measure (e.g., Baily 1986, and McGuckin and Nguyen 1993).   

 
Alternative labor productivity measures based on value-added are widely used in plant-

level productivity analyses (e.g., McGuckin et al., Greenan and Mairesse (1996), Brynjolfsson 
and Hitt (2000)).  Value-added labor productivity is the plant’s total value of shipments (Q) 
minus its cost of materials (including energy and purchased services) (M), divided by its total 
employment.  The costs of materials, energy, and purchased services all are reported on the 1999 
ASM.   

 
The gross output specification is preferred theoretically because it imposes fewer 

restrictions on the inputs.  Baily 1986 shows that using a value-added model yields 
systematically biased estimates of the theoretically correct total factor productivity model.  
Value-added productivity measures are common in estimations using aggregate data because of 
the potential double-counting in aggregate gross output measures.  Outputs of one industry can 
be purchased and used as inputs by another industry, making value-added a more appropriate 
output measure because it nets out intermediate outputs.  It is generally accepted that, 
particularly at the plant level, gross output is an appropriate measure of “output” (see McGuckin 
and Nguyen 1993).  However, many plant-level studies use the value-added measures to 
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facilitate comparisons with the growth-accounting literature, or because their data lack separate 
measures of inputs other than capital and labor.  We construct the value-added measure and 
estimate the corresponding empirical model in the next section to allow comparisons with 
previous studies.  However, unless specifically stated, results presented in this paper are based on 
gross output labor productivity. 

 
Explanatory variables.   

 
“Network” is the key explanatory variable in this study.  It takes on a value of one if the 

plant reported having a computer network, and zero otherwise.  About 88 percent of the plants 
responding to the CNUS used computer networks (see Table 1).   

 
Many plant-level productivity studies consider computers as an input, splitting capital 

into computer and non-computer measures.  As noted above, we treat the use of computer 
networks as a shift in technology, as specified in equation (2).  Because we use the new CNUS 
data, our study of necessity is cross-sectional, rather than the longitudinal or panel study 
common in the plant-level productivity literature.  (However, we do address endogeneity issues 
below.)  In a cross-section, we assume existing production technologies are available to all 
plants, with competition yielding a rough convergence in productivity across plants of different 
ages and initial technologies (e.g., Jensen, McGuckin, and Stiroh (2000)).  To continue the steel 
mill example, the new computer-controlled steel-making processes are available to all plants.  
Using computer networks to link computerized processes to track staffing, shipments requested 
by customers, or raw material deliveries needed or on order from suppliers, shifts the production 
frontier for given steel-making technologies.  In practice, the CNUS data, like many other plant-
level data (e.g., Mairesse and Greenan (1996)) show substantial variation among plants in both 
gross output and value-added productivity measures.  At the three-digit NAICS level, gross 
output productivity for CNUS respondents ranges from 47 percent to over 400 percent of the 
manufacturing sector average. 
 

“K/L” is the plant’s capital / labor ratio as reported in the 1997 CM.  Capital is total asset 
value, that is, the book value of buildings and machinery.  Labor in the denominator of this ratio 
is total employment in 1997.  We use 1997 data on capital intensity (K/L) because data on total 
capital stock are not available in 1999, which is not an Economic Census year.  The measure is 
not adjusted for either capital or labor quality.  We note that our capital measure is a stock 
measure, not a flow of services.  However, developing plant-level capital service flows is very 
difficult and is beyond the scope of this research.  We assume that the flow of services is 
proportional to book value.  This assumption appears to be reasonable given the fact that we 
control for plant characteristics in our regressions.  As with many other plant-level studies (e.g., 
McGuckin et al., and Greenan, Mairesse, and Topiol-Bensaid (2001)), we use the book value of 
the capital / labor ratio as our measure of capital intensity.   

 
Finer detail on capital stock and capital spending, particularly a split into computer vs. 

other machinery stock and spending would obviously be highly desirable in testing the separate 
effects of computers and the presence of computer networks on productivity.  Such detail on 
computer investment, but not on the presence of networks, was collected in Economic Census 
years through 1992.  Stolarick, 1999, for example, makes use of the computer investment 
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measure in papers examining the relationship between productivity and computer and other 
information technology spending.  However, he is not able to test for the effect of computer 
networks.  Ideally, we would like to test for both computer investment and the presence of 
networks.  However, computer investment data were not collected in the 1999ASM 
 
 “M/L” is the plant’s cost of materials (including energy and purchased services) (M), 
divided by its total employment (L).  Because computer networks are expected to streamline 
production processes, plants with networks might use fewer materials and have correspondingly 
higher levels of gross output labor productivity.  Explicitly including materials also captures 
some costs associated with both computers and computer networks, namely the purchased 
services that are frequently associated with installing and maintaining networks and operating 
software.   
 

“SKILL” is the ratio of the number of non-production workers to total employment in the 
plant, as reported on the 1999 ASM.  Computer networks require highly skilled workers to 
develop and maintain them.  Productivity might thus be higher at plants with a higher proportion 
of skilled labor because these workers are able to develop, use, and maintain advanced 
technologies, including computer networks.  But applications such as expert systems may allow 
a function to be carried out with employees who have lower skill levels, or with fewer 
employees.  Occupational detail would be desirable to test the relationship among productivity, 
networks, and the presence of such skilled occupations as computer programmers and systems 
support staff  (e.g., Greenan, Mairesse, and Topiol-Bensaid (2001) and Motohashi (2001)).  
However, the ASM only collects information on the total numbers of production and non-
production workers in the plant, with no further detail by process, function, or worker 
characteristic.  Dunne and Schmitz (1992) found that plants in the 1988 SMT that used advanced 
technologies had higher ratios of non-production to total workers.  As with many other plant-
level studies (e.g., McGuckin et al., and Dunne et al.) we use this employment ratio to proxy for 
skill mix in our productivity estimates.  Production workers accounted for about one-quarter (27 
percent) of employment among CNUS respondents in manufacturing.  This share is similar to 
shares reported for the five two-digit U.S. Standard Industrial Classification (SIC) industries in 
the 1988 and 1993 SMTs (e.g., McGuckin et al. 1998). 

 
The “SIZE” variable is based on total employment.  We use three different proxies for 

plant size.  Our first proxy is log(L), where L is defined as total number of employees in the 
plant.  This measure is used elsewhere, e.g., Greenan and Mairesse (1996).  Note that because L 
enters both sides of the productivity equation, using this proxy may introduce biases in the 
parameter estimates of the model.  We therefore develop two additional measures of size.  Our 
second measure classifies plants into six standard employment size groups:  fewer than 50 
employees, 50 to 99, 100 to 249, 250 to 499, 500 to 999, and 1000 or more.  We then assign a 
value of 1 for group 1, a value of 2 for group 2, etc.  Our third measure specifies plant size as a 
standard series of six dummy variables, that is, if total employment is less than 50 then size1 = 1, 
otherwise size1 = 0; if 50 <total employment  <100 then size2 = 1, otherwise size2 = 0; etc.  
About 30 percent of the plants in our sample have fewer than 50 employees, 20 percent have 
between 50 and 99 employees, about 30 percent have between 100 and 250 employees, and the 
remaining 20 percent are in larger plants.   
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Many manufacturing plants are part of a multi-unit firm, so employment size alone is an 
inadequate indicator of available resources, managerial expertise, and scale.  We construct a 
dummy variable, “Multi,” that takes on the value of one if the plant is part of a multi-unit firm, 
and equals zero otherwise.  Nearly two-thirds of the plants in our sample are part of a mulit-unit 
firm. 

 
All previous studies of plant-level behavior note substantial heterogeneity among plants 

within detailed manufacturing industries, as well as between detailed industries.  There are 21 3-
digit NAICS manufacturing industry groups in our sample (NAICS codes 311- 316, 321- 327 
and 331-337).  Industry dummies (“IND”) are included in the empirical model specifications to 
capture industry-specific effects on plant-level labor productivity. 
 

Endogenous computer networks 
 
 Equation (4) is based on the assumption that computer networks (CNET) are exogenous 
and uncorrelated with the error term, g. If this is the case then the estimates of the equation are 
consistent. We note, however, that there are good reasons that such an assumption may be 
unsatisfactory.  For example, McGuckin et al. point out that adopting a computer network is 
positively correlated to plants’ performance. That is, good plants are most likely to have 
computer networks.  If this is correct, then estimates of equation (4) are likely to be subject to 
endogeneity biases. 
 
 The above positive correlation forms the basis for our econometric specification of the 
following selection equation that predicts which plants are likely to adopt computer networks. 
That is, 
 

CNET =  (0 + (1log(LP92) + (2log(K/L92) + (3log(SKILL92) 

               + (4log(COMP92)  + (5 MULTI  + jλi INDi   + η                    (5)                                                                             
 
where “CNET” equals 1 if the plant has a computer network in 1999 and is zero otherwise.  In a 
nutshell, equation (5) postulates that having a computer network in 1999 depends on the 
performance (the plant’s productivity relative to its industry) and the condition of the plant in a 
prior period. 
  

The prior period is 1992, an Economic Census year when the required data were 
collected in the CM; the term “92” in the independent variables denotes the year 1992.  Our 
relative performance measure is Q/L92, the plant’s gross output labor productivity in 1992 
relative to the average for its 4-digit SIC industry.  Capital intensity and skill mixes are 
associated in the literature with use of computers.  We use K/L92, the plant’s capital / labor ratio, 
to measure capital intensity and SKILL92, the share of non-production workers, to measure skill 
mix.  Spending on computers in previous periods is an important component of its prior 
condition, and on the likelihood that it has computers to network.  “COMP92” is computer 
expenditures per employee. We control for whether the plant is part of a multi-unit firm, 
(“Multi”), and its industry.  For all these explanatory variables, we use values from the 1997 CM 
if the plants are new since 1992.   
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We estimate (5) as a Probit and use the model parameter estimates obtain the estimated 

probabilities of having a computer network.  We then use the estimated probabilities as an 
instrument in the productivity regression (4).2   
 
 
C. Empirical Findings 
 

Average labor productivity is higher in plants with computer networks.  Table 1 shows 
that average labor productivity is nearly 30 percent higher in plants with computer networks for 
manufacturing as a whole.  Both gross output and value-added labor productivity measures are 
shown in the table.  Estimates not reported in Table 1 show that the size of the productivity 
differential varies within manufacturing, but is of roughly similar magnitudes using either 
productivity measure.  McGuckin et al., find similar differentials in average labor productivity 
for a set of 17 advanced technologies involving the use of computers in the five SMT 
manufacturing industries.   

 
While the numbers reported in Table 1 suggest that computer networks have a substantial 

positive effect on plant productivity, we note that conclusions based on simple averages like 
these can only be tentative because they do not control for other factors such as plant 
characteristics.  Regression analysis allows us to assess the effect of computer networks on 
productivity while controlling for other important factors such as capital intensity, skill mix, and 
industry. 

 
 
i. Econometric Findings 
 

Using computer networks significantly affects plant-level labor productivity in our 
econometric estimates.  Many of the expected relationships with explanatory variables hold, and 
are consistent across empirical model specifications.  For a few explanatory variables, our results 
differ from theoretical expectations, but are consistent with some closely related empirical 
findings.  We first report estimates based on our preferred specification, equation (4), and discuss 
their consistency with other research findings.  We then assess those results in three ways, and 
conclude that our empirical findings are robust.   
 

Preferred specification.  Labor productivity is about five percent higher in plants with 
computer networks.  Column 1 of Table 2 reports the results of our OLS estimate of equation (4).  
Plants using computer networks have labor productivity that is 4.6 percent higher, controlling for 
skill mix, capital intensity, materials intensity, being part of a multi-unit firm, and industry 
subsector.  Finding a positive and significant relationship between computer networks and 
productivity in U.S. manufacturing is consistent with the few other studies addressing this 
relationship in the U.S. or other countries (e.g., McGuckin et al. (1998) for five two-digit U.S. 

                                                 
2 Jarmin (1999) uses a similar approach to account for potential selectivity bias in evaluating the effect of 

plant participation in government-sponsored programs that provide industrial modernization services to small and 
medium-sized manufacturers.   
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manufacturing industries; Greenan and Mairesse (1996) for France; and Motohashi (2001) for 
Japan).  Most of the relationships we find between productivity and other explanatory variables 
also are broadly similar to those in previous studies.   

 
Many expected relationships with explanatory variables hold in our estimates.  Skill mix 

is positively and significantly related to labor productivity.  The skill mix elasticity is about 0.04.  
This positive relationship is consistent with expectations that productivity is linked to the use of 
new production processes, including use of computer networks, which require skilled workers.  
Capital intensity is positively and significantly related to labor productivity, with an elasticity of 
about 0.10.  Material intensity is positively and significantly related to labor productivity, with 
an elasticity of about 0.51.   

 
The relationship of firm and plant size to productivity is more complex.  Being part of a 

multi-unit firm matters.  Productivity in plants that are part of multi-unit firms is 11 percent 
higher than in single-unit plants, controlling for networks, skill mix, capital intensity, materials 
intensity, and size (column 2).  However, controlling for being part of a larger firm, we find that 
larger plants have lower labor productivity.  The coefficients on the separate size class dummies 
reported in Column 2 are negative and most are significant.  Unreported regressions using total 
employment as a size measure, or using the continuous size class measure described in the 
preceding section, yield qualitatively similar results.  Productivity decreases as size class 
increases.3   

 
Finding strong effects of computers or computer networks in cross-section is consistent 

with a larger plant-level productivity literature.  That literature also finds, however, that strong 
effects are harder to discern in panel and time-series studies (e.g. Mairesse & Griliches (1995)).  
This is consistent with the estimates we present in Table 3 that account for plant characteristics 
in a previous period.  

 
 
ii. Robustness of Results  

 
Our finds of a significant effect of computer networks on plants’ labor productivity is 

robust regardless of model specification (two- versus three-factor models), sample selectivity, or 
estimation methods (OLS versus two-stage methods).  We discuss each of these dimensions in 
turn.  Table 2 reports estimates of the productivity equations with and without materials as a 
factor input.  Columns (1) – (3) show the two- and three-factor OLS estimates, while column (4) 
presents the two-stage estimates of the three-factor model.  

 
Endogeneity.   
 

                                                 
3 We find returns to plant scale that are somewhat less than 1.  We have looked at several alternative 

specifications using these data, at coefficients reported in McGuckin et al., and at coefficients using a different set of 
U.S. manufacturing panel data from a much earlier period, and find similar results.  These findings may reflect the 
larger plant sizes in the CNUS data compared to all manufacturing.  Similar results were found in a previous study 
of returns to scale in selected U.S. manufacturing industries (Nguyen and Reznek 1991).   
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We address potential endogeneity through a two-stage estimation.  We first estimate the 
probit described in equation (5).  Results of that Probit regression are reported in Table 3. As 
expected, prior investment expenditure on computers has a significantly positive effect on the 
likelihood that a plant currently has a computer network.  Similarly, the significant, positive 
coefficient for the multi-unit firm dummy variable suggests that a plant belongs to a multi-unit 
firm is more likely to have a computer network than a single-unit firm.  The coefficient for skill 
mix is positive, but is statistically insignificant.  This suggests that plants with a high proportion 
of non-production workers do not necessarily adopt a computer network.  We note, however, that 
this coefficient might be insignificant because our proxy for “skill mix” (the ratio of non-
production workers to total employment) may not accurately reflect the true skill mix.  Indeed, 
non-production workers in the CM data include all types of white-collar workers such as 
managers, engineers, technical workers as well as other office workers.  Finally, the coefficient 
for plants’ prior relative initial labor productivity (ILP) is significantly negative, suggesting that 
less productive plants are more likely to adopt a computer network.  This supports the hypothesis 
that plants that were less productive before having a computer network are likely to adopt a 
computer network to improve their productivity.   

 
This result is consistent with results reported in Stolarick 1999b, which reports a similar 

finding for spending on computers.  In that study, higher productivity plants spend less on 
computers, while lower productivity plants spend more.  The primary determinant of current 
productivity appears to be prior productivity, not computer spending. 
 

After estimating the Probit regression, we re-estimate our two-stage model, replacing the 
computer network dummy variable with the predicted probability that the plant has a computer 
network.  Results of that estimation are reported in Column 4 of Table 2.  Consider, first, the 
estimated coefficients of our variables of interest: “Network” and “Pr (Network)”.  The estimated 
coefficient for “Pr (Network)” is statistically significant at the one percent level, having a value 
of 0.505.  This estimate suggests that, ceteris paribus, a 1% increase in the probability of a plant 
having a computer network would increase its labor productivity by 0.505%.   

 
Both the OLS and two-stage estimates indicate that labor productivity is higher in plants 

having computer networks.  Recall that the estimated coefficient for the “Network” variable in 
the OLS regression is also statistically significant, having a value of 0.046, shown in Column 1 
of Table 2.  We emphasize, however, that the OLS and two-stage estimates are not directly 
comparable because the variable “Network” in the OLS regressions is a dummy variable having 
values of either 0 or 1, while the “Pr (Network)” variable is continuous and has values between 0 
and 1. Thus, the interpretation of these results is not the same.  While the interpretation of the 
OLS estimates is straightforward, that of the two-stage estimates is not because the estimated 
effect depends on which pair of plants we to compare. 

 
One way to evaluate the effect of computer networks on plant productivity using the 

estimated coefficients of the “Pr (Network)” variable is to compare the productivity impacts on 
plants at two points in the predicted probability of having a computer network.  To illustrate, we 
compare plants at the 10th and 90th percentiles of the estimated probability of having a computer 
network.  The respective estimated probabilities of these plants adopting a computer network 
0.8422 and 0.9671. Using the estimated coefficient for the “Pr (Network)” of .505 from the 
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probit regression (Column 4 of Table 2), we can calculate the productivity difference between 
the two plants:  0.505(0.9671 - 0.8422) = 0.0631.  This estimate indicates that a plant moving 
from the 10th percentile (less likely to have a computer network) to the 90th percentile (more 
likely to have a computer network) would increase its labor productivity by from 6.31%.  This 
estimate is about 2 percentage points above the estimates obtained from the OLS models.  Note 
that about 10% of plants in our sample do not have a computer network and about 90% have a 
computer network. 
 

Table 4 reports these and similar calculations of the estimated effect of computer 
networks on plant productivity based on the estimates obtained from the two-stage regressions.  
In an extreme case, comparing a plant with a probability of having a computer network at the 1 
percentile to that at the 99th percentile of the probability distribution, we find that the latter 
outperforms the former by 14%.  Thus, the results in Table 4 indicate that our two-stage model 
supports the empirical evidence from our OLS estimates that computer networks have a 
significantly positive effect on plant labor productivity. 
 

Selectivity.  There are reasons to be concerned about selectivity in the CNUS data itself, 
and in the subset of the CNUS data that we use to address endogeneity concerns.  Plants in that 
responded to the CNUS are substantially larger than the typical manufacturing plant.  Average 
employment is 223 employees in our data compared to an average of about 45 employees for the 
entire manufacturing sector.  If response was nonrandom, our sample may be a biased sample of 
manufacturing plants.  However, when we include Mill’s ratios in the regressions to take account 
of selectivity, we find similar results. 

 
The two-stage estimate in column (4) is based on responses from the 17,787 plants for 

which we have the data on computer expenditures in 1992 required for our first-stage probit 
estimation.  These data are available for about 60 percent of the roughly 30,00 plants that have 
data on all the variables required to estimate our one-stage specification reported in Column 1.  
The computer expenditures data are missing because a number of new plants opened after 1992, 
and because a number of plants that existed in 1992 did not report their expenditure on 
computers.  Stolarick 1999a reports a similar drop in sample for 1992 because plants did not 
respond to the computer expenditure question.   

 
To assess the effect of the reduced sample on our two-stage estimates, we also estimate 

the OLS regressions reported in column (1) using the sample of 17,787 plants, and report the 
results in column (3).  The OLS estimate for the “Network” variable with the reduced sample is 
0.033 and statistically significant.  This estimate is 1.3 percentage points, or 30 percent, lower 
than the 0.046 estimate based on the larger sample and reported in Column 1.  The difference 
between the estimates suggests some degree of sample bias.  Thus, if our sample is not 
representative of U.S. manufacturing, then our estimates of the impact of computer networks on 
labor productivity is likely biased somewhat downwards.  If there were a proportionate 
difference between our larger sample and U.S. manufacturing, the effect of computer networks 
on productivity in manufacturing as a whole would be about 6.4 percent. 
 

Choice of theoretical model.  Our preferred specification uses a gross-output measure of 
labor productivity and includes materials as a separate input.  Many empirical productivity 
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studies exclude materials from the model, and use a value-added measure of labor productivity.  
To facilitate comparisons with earlier studies, we estimate a similar model.  The dependent 
variable in the comparative model is a value-added productivity measure.  Capital and labor are 
included as productive inputs, but materials are not.  The remaining independent variables, size 
and industry, are the same in both empirical specifications.  Our preferred and comparative 
estimates are reported in Columns 1 and 2 of Table 1.     

 
We find that differences in theoretical specifications matter empirically.  The estimated 

impact of computer networks on labor productivity is twice as high in the value-added model.  
The estimated coefficient for “Network” is 0.105 in the value-added model, compared to 0.460 
in the gross-output model.  This coefficient of 0.105 is at the lower end of the range of estimates 
reported in studies using the value-added model.   

 
The comparative estimate we present in Column 2 of Table 1 of the effect of computer 

networks on U.S. manufacturing productivity is similar to findings in McGuckin et al. for an 
earlier period and for five two-digit U.S. manufacturing industries.  In the specification most 
similar to ours, in their Table 7, computer networks and other communication and control 
technologies increase labor productivity by about 12 percent in 1993.  Our estimate is about 11 
percent.  Their elasticity of capital intensity is 0.144; ours is 0.186.  They estimate the skill 
elasticity to be 0.078, while our estimate is 0.084. 

 
The strong relationship we find between computer networks and productivity in U.S. 

manufacturing in the two-factor estimates reported in Table 2 is also consistent with other studies 
addressing the relationship between various IT measures and productivity (e.g., Stolarick 1999a 
for the U.S., and Greenan and Mairesse (1996) for France).  Most of the relationships we find 
between productivity and other explanatory variables also are broadly similar to those in 
previous studies.  Finding strong effects of computers or computer networks in cross-section is 
consistent with a larger plant-level productivity literature.  That literature also finds, however, 
that strong effects are harder to discern in panel and time-series studies (e.g. Mairesse & 
Griliches (1995)). 

 
While the estimates of our two-factor model are similar to those in the prior literature, our 

results strongly suggest that such a model is subject to omitted variable bias.  The coefficients of 
materials intensity (log (M/L)) are significant and their magnitudes are virtually invariant across 
specifications and sample size.  In addition, the explanatory power of the three-factor model (R2) 
is about three times that obtained from the two-factor model (0.756 vs. 0.261).  The explanatory 
power of the three-factor model is stable across models and sample sizes.  These results suggest 
that previous estimates using the value-added model appear to over-estimate the effects of 
computer networks and IT on productivity. 
 
  
5. Conclusions 

 
This is the first study to analyze the effect of computer networks on productivity for the 

all U.S. manufacturing industries.  We find that labor productivity is significantly higher in 
manufacturing plants with computer networks.  This finding is robust, holding up for two 
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definitions of labor productivity and several alternative model specifications, including a model 
taking endogeneity into account, and samples.  It also is qualitatively consistent with the few 
other studies in the literature that look explicitly at the use of computer networks in the U.S. or in 
other countries. 

 
However, we also find that the estimated size of the network effect varies markedly 

between our preferred three-factor specification and the two-factor model used in many previous 
studies of the effect of IT on productivity. Estimates based on our preferred three-factor model 
show markedly lower estimates of computer network effects.  Because our three-factor model is 
theoretically superior to the two-factor model, and has empirically superior explanatory power, 
we conclude that the value-added model over-estimates the effects of computer networks and IT 
on productivity.   

 
The new CNUS data offer rich possibilities for further refinement and expansion of our 

analysis of how using computer networks and e-business processes affect plants’ productivity.  
We are exploring whether these data support results in the literature that the payoff to using 
computers or computer networks depends on whether they are used in making the basic product 
or in back-office functions such as customer support or accounting and payroll.  The ability to 
link the CNUS data to our existing longitudinal research database allows us to model 
relationships between the use of computer networks and many facets of the growth and behavior 
of plants. 
 
 
 
 
 



  

 18

Table 1.  Definitions and Means of Variables  
 

Variable Definition* 
Average for Plants in 

Sample 

 

 
Plants with 
Networks 

Plants 
without 

Networks 
Labor Productivity TVS/TE 284.79 222.39 
Labor Productivity VA/TE 133.65 103.29 
Employment TE 235.70 118.64 
   
  All Plants 
Labor Productivity TVS/TE 277.34 
Labor Productivity VA/TE 130.03 
Employment TE 221.72 

Network 
Network = 1 if plant uses computer 
network 0.88 

Capital Intensity 
Capital/labor ratio in 1997 
(K97/TE97). 107.50 

Skill mix OW/TE 0.27 

Multi-unit            
Multi =1 if plant owned by multi-
plant firm 0.64 

Size   

0 < TE < 50  
50 < = TE < 99  
100 < = TE < 250  
250 < = TE < 499  
500 < = TE < 999  
TE > = 1000  

0.29 
0.19 
0.28 
0.14 
0.07 
0.03 

Industry    
Three-digit NAICS subsectors 
311 to 316; 321 to 327; & 331 to 337 N/a 

*Variable Definitions: 
 TVS:    Total value of shipments. 

 
TE:       Total employment (total number of production workers and  
             non-production workers). 

 VA:      Total value of shipments minus materials and energy 

 
K:         Total asset value (book value of building and machinery) in  
             1997 

 OW:      Non-production workers 
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Table 2. Labor Productivity Regression Results  

 
Dependent Variable : Labor Productivity  

(T-statistics in parentheses) 

 
 OLS Estimates 

 
Two-stage Estimates 

 Gross Output Value-Added Gross Output Gross Output 

Independent 
Variables (1) (2)  (3) (4) 

Intercept 
2.678 

(159.95) 
3.736 

(144.57) 
2.830 

(119.48) 
2.357 

(32.50) 

Network 
.046 

(5.76) 
.105 

(7.85) 
.033 

(3.00) (--) 

Pr (Network) (--) (--) 
 

(--) 
.505 

(6.41) 

Skill 
.043 

(12.28) 
.084 

(14.12) 
.039 

(8.40) 
.037 

(8.12) 

Log(K/L97) 
.091 

(39.86) 
.186 

(49.91) 
.088 

(28.81) 
.084 

(26.61) 

Multi 
.114 

(19.30) 
.236 

(24.17) 
.101 

(12.58) 
.039 

(3.31) 

Log(M/L) 
.515 

(206.74) (--) 
.505 

(148.93) 
.506 

(150.48) 

Size2 
-.055 
(7.92) 

-.049 
(4.13) 

-.052 
(5.52) 

-.047 
(5.09) 

Size3 
-.084 

(12.43) 
-.077 
(6.72) 

-.079 
(8.88) 

-.073 
(8.35) 

Size4 
-.092 

(11.25) 
-.097 
(6.96) 

-.083 
(7.77) 

-.071 
(7.37) 

Size5 
-.090 
(8.74) 

-.107 
(6.19) 

-.070 
(5.23) 

-.065 
(4.88) 

Size6 
-.017 
(1.21) 

.012 
(0.53) 

-.008 
(0.460 

-.004 
(0.22) 

Industry  
(3-digit NAICS) Yes Yes 

 
Yes Yes 

R2 .756 .261 
 

.750 .756 

Number of Plants 
 

29,808 29,671** 
 

17,787 17,787 
 

 
** The number of observations in column (2) is smaller than that in column (1) because a number of plants have value-
added equal to zero. 
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Table 3.    Probit Regression Results 
 

Dependent Variable: Plant has Computer Network (1, 0) 
 

Independent Variables          Estimated Coefficients P2 
   
Intercept   1.045 149.78* 
Log (ILP) 
Log of initial** labor productivity 
relative to the plant’s 4-digit SIC 
industry -0.075 27.74* 
Log(ISKILL)        
log of initial skill mix  0.005 0.05 
MULTI           
Part of multi-unit firm in initial period. 0.608 385.10* 
COMP92  
Log of initial computer expenditures   
/ initial total employment 0.286 5.07* 
Industry 
Initial 2-digit SIC industry group 

Yes  

 
Notes: 

* Denotes significant at the 1% level 
      “initial” period is:  1992 for plants in existence in 1992, 1997 for new plants. 
  
 
 
 
 

 
Table 4: The Effect of Computer Networks on Plant Labor Productivity 

(Estimated using two-stage estimates) 
 

Percentiles (%) of Pr (Network) 
 

Percent increase 
in labor productivity 

(1) (2) 
1% (.6992) vs. 99% (.9778) 14.07%a 

5% (.7606) vs. 99% (.9778) 10.55% 
1% (.6992) vs. 10% (.8422) 7.22% 

10% (.8422) vs. 90% (.9671) 6.31% 
10% (.8422) vs. 50% (.9349) 4.68% 
25% (.8805) vs. 75% (.9626) 4.16% 

 

a.  The estimated increases in labor productivity in column (2) are calculated by comparing plants at different points 
in the distribution of predicted probabilities of having a computer network.  For example, the first row compares 
plants and the 1st and 99th percentiles of the predicted probability of having a network.  The entry in column (2) is 
calculated as 0.505(.9778 - .6992) = 0.1407 (14.07%), where 0.505 is the estimated coefficient of Pr (Network) 
reported in Table 3, column (4). 
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Appendix:  Data 
 
 

 
The Annual Survey of Manufactures (ASM) is designed to produce estimates for the 

manufacturing sector of the economy.  The manufacturing universe consists of approximately 
365,000 plants.  Data are collected annually from a probability sample of approximately 50,000 
of the 200,000 manufacturing plants with five or more employees.  Data for the remaining 
165,000 plants with fewer than five employees are imputed using information obtained from 
administrative sources. 

 
The 1999 Annual Survey of Manufactures Computer Network Use Supplement was 

mailed to the plants in the ASM sample.  This supplement collected information about 
manufacturers’ e-commerce activities and use of e-business processes.  The questionnaire asked 
if the plant allowed online ordering and the percentage of total shipments that were ordered 
online.  Information on online purchases were also asked.  In addition, information was collected 
about the plant’s current and planned use of selected e-business processes and the extent to 
which the plant shared information online with vendors, customers, and other plants within the 
company.  Approximately 83 percent of the plants responded to this supplement.   
 


